Table 1. Information for 65 models applicable for forest ecosystem modeling*			
Software	Description	Source	Data
1. <u>ACORn</u>	ACORn (A Comprehensive Ozark Regeneration simulator) is a computer program that can help forest managers predict the number and species of trees that will regenerate following harvest in upland oak stands in the Ozark Highlands of Missouri and adjacent states.	http://www.nrs.fs.fed.us/tools/so ftware/	
2. <u>ASPEN</u>	ASPEN is an empirical simulation model that projects the growth and yield of aspen (Populus tremuloides and P. tremula) stands from establishment to breakup. The model incorporates the system of equations developed from growth and yield data from throughout the range of P. tremuloides and P. tremula; the model should thus be applicable throughout the circumboreal region. The model runs on an annual time step and predicts total yields in number of trees, basal area, and biomass, as well as merchantable yields in cubic feet and cords for user-specified utilization standards, and in Scribner board feet. Outputs are in the form of stand tables and stocking guides. The model supports silvicultural operations such as thinning, as well as management for multiple products.	http://www.nrs.fs.fed.us/tools/so ftware/	
3. The	CLM-DGVM consists of CLM3.0 as described by	http://nldr.library.ucar.edu/repos	CLM-DGVM Output
Community	Oleson et al. (2004) plus a set of routines that allow	itory/assets/technotes/TECH-	BURN: fraction of naturally vegetated landunit
Model's	instead of prescribed from data Annual (or slow)	<u>NOTE-000-000-000-399.pdf</u>	CELUXFIRE: carbon flux to the atmosphere due to
Dynamic	processes include the update of vegetation		fire (g C m-2 of naturally vegetated
Global	biogeography and structure. The plant-atmosphere		landunit area) (variable Offire: part I section 2.9).
Vegetation	exchange of carbon (in the form of CO2) occurs at		NPP: net primary production (g C m-2 of plant
Model	a subhourly time step. Plant phenology is calculated		functional type area; note different area
<u>(CLM-</u>	daily (Figure 1). Vegetation is represented by the		unit) (variable NPP: part I section 2.1)

DGVM)	carbon stored in leaves, roots, stems (sapwood), and	Rh: heterotrophic respiration (g C m-2 of naturally
	heartwood. Given these carbon pools, the model	vegetated landunit area) (variable Rh:
	can derive every pft's leaf area index, canopy	part I section 2.12).
	height, and fractional cover relative to the portion	PFT: plant functional type (pft: concept first
	of the grid cell allocated to natural vegetation. (In	mentioned in part I section 1.1).
	standard CLM simulations, these variables come	FPCGRID: pft fractional cover relative to the
	from input datasets.) The leaf area index	naturally vegetated landunit area (FPC:
	participates in the calculation of photosynthesis.	first defined in part I section 2.1).
	Generally, photosynthesis minus autotrophic	LCIND: grams of leaf carbon per individual (Cleaf:
	respiration (defined as net primary production)	part I section 2.1).
	minus mortality determines a pft's success at the	RCIND: grams of root carbon per individual (Croot:
	grid cell level. Carbon from live plants eventually	part I section 2.1).
	ends up in above and below ground litter and turns	SCIND: grams of sapwood carbon per individual
	to soil carbon, which decomposes at various rates to	(Csapwood: part I section 2.1).
	close the terrestrial carbon cycle. At this time,	HCIND: grams of heartwood carbon per individual
	CLM-DGVM has been tested only with a	(Cheartwood: part I section 2.1).
	prescribed atmospheric CO2 concentration. CLM-	NIND: number of individuals per m2
	DGVM is not supported for fully coupled carbon	naturally vegetated landunit area (P: part I section
	simulations where atmospheric CO2 is predicted. In	2.1).
	CLM-DGVM the maximum number of pfts in a	List of Subroutines
	grid cell's naturally vegetated landunit has changed	DGVMrespiration: Sub-hourly. Calculates
	from 4 (standard CLM) to 10 to allow all pfts to	autotrophic respiration for each existing pft.
	coexist when climate permits. CLM-DGVM keeps	The corresponding equations were adapted from the
	track of all 10 pfts, even when a pft's area is zero,	equations in subroutine npp in LPJ
	in order to allow for the annual introduction and	version 1.
	removal of pfts. This differs from the standard	Lpj: Annual. Calls the so-called slow processes in
	CLM, where pfts are maintained only when their	the order listed here. The model returns
	area is greater than zero. Filters may be used at run	from subroutine lpj with updates to the following pft
	time to eliminate redundant calculations for pfts	variables: maximum leaf area
	with zero area.	index, canopy height, and fraction of the naturally
		vegetated landunit occupied by the pft.
		These variables are used in the model's sub-hourly
		biogeophysical calculations.
		Reproduction: Annual. Adapted from subroutine
		reproduction in LPJ version 1. Calculates

	the cost of reproduction for existing pfts and updates
	above ground litter and annual
	net primary production.
	Turnover: Annual. Adapted from the subroutine by
	the same name in LPJ version 1.
	Given pft-specific longevity values for various types
	of plant tissue (Table 2), calculates
	the amount of living carbon that enters the above
	and below ground litter pools and the
	amount of sapwood that turns to heartwood.
	Kill: Annual. Adapted from the subroutine by the
	same name in LPJ version 1. When a
	pft ends the year with negative net primary
	production, the pft is removed and its carbon
	converted to litter.
	Allocation: Annual. Adapted from the subroutine by
	the same name in LPJ version 1.
	Determines the fractions of the year's biomass
	increment that become leaf, sapwood, and
	root carbon.
	Light: Annual. Adapted from the subroutine by the
	same name in LPJ version 1. Deals
	with aboveground competition, otherwise described
	as mortality due to shading.
	Mortality: Annual. Adapted from the subroutine by
	the same name in LPJ version 1. A
	fraction of trees is removed and converted to litter
	every year due to background mortality
	and mortality due to heat stress.
	Fire: Annual. Adapted from subroutine fire in LPJ
	version I. A traction of trees and
	above ground litter is removed and converted to
	atmospheric CO2.
	Establishment: Last of the annual processes.
	Adapted from subroutines bioclim and establishment

			in LPJ version 1. This subroutine provides a seed
			amount of vegetation for
			new pfts in the presence of suitable climate
			conditions.
			Phenology: Daily. Called from subroutine
			EcosystemDynDGVM to determine daily leaf
			area index as a fraction of the annual maximum
			value. Adapted from subroutine pheno in
			IBIS version 2 (Kucharik et al. 2000). Unlike LPJ's
			equivalent algorithm, the IBIS algorithm
			requires no prior knowledge of the meteorological
			conditions of the upcoming year.
			Since CLM doesn't have access to such information
			when coupled to a GCM, the algorithm
			found in IBIS was used.
			FireSeason: Sub-hourly. Called from subroutine
			EcosystemDynDGVM to determine the
			length of the year's fire season. Adapted from
			subroutine fire in LPJ version 1.
			LitterSOM: Sub-hourly. Called from subroutine
			EcosystemDynDGVM to convert litter
			to soil organic matter. Adapted from the
			corresponding subroutine in LPJ version 1.
			EcosystemDynDGVM: Calls Phenology to
			determine daily leaf area index, which takes
			part in the photosynthesis calculation (Oleson et al.
			2004). EcosystemDynDGVM also
			sets stem area index, height of the bottom of the
			canopy for trees, and top and bottom
			canopy heights for grasses, all needed in the model's
			biogeophysical calculations.
4. ECOST	ECOST is a Visual Studio .net program that	http://www.nrs.fs.fed.us/tools/so	
	estimates stump-to-mill costs of cable logging,	<u>ftware/</u>	
	conventional ground-based skidding, cut-to-length,		
	feller-buncher applications, forwarding, and small		

	farm tractors for logging Eastern hardwoods.		
<u>5. ED</u>	The land surface in ED2 is subdivided into a series	http://www.oeb.harvard.edu/fac	Input Data:
(Ecosystem	of grid cells that experience meteorological forcing	ulty/moorcroft/publications/publ	There are four types of input data: Grid Cell Area;
Demography	from either of natural disturbance processes such as	ications/Medvigy etal 2009.pdf	Land Sea Mask; Mechanism Input; and ISLSCP I
model	wind-throw and fire, and anthropogenic		Initiative data. These extrapolate into 8
version 2)	disturbances such as forest harvesting, land		subdirectories (grid_cell_area, mask, mechanism,
	clearing, and land-abandonment. Like its		precip, soils, soil_temp; sois, and temp) each
	predecessor ED, ED2 captures subgrid scale biotic		described as follows:
	heterogeneity arising from disturbance events using		Grid Cell Area. The grid_cell_area subdirectory
	a system of size- and age-structured partial		contains a single file, GRIDAREA.GRD, which is a
	differential equations (PDEs) that closely		one degree global ASCII map of grid cell area
	approximate the ensemble meanbehavior of a		provided in km2, and provided by Moorcroft et al.
	corresponding individual-based stochastic gap		2001.
	model [Moorcroft et al., 2001]. These PDEs are		Mask. The mask subdirectory contains a single file,
	solved using the method of characteristics,		land_sea.msk, which is a land/sea mask where a
	subdividing each grid cell into a series of dynamic		value of 1 represents land and a value of 0 represents
	horizontal tiles, representing locations within the		water. This file is in ascii text format at a spatial
	grid cell that have experienced a similar disturbance		resolution of 1 degree latitude by 1 degree longitude
	history, and with an explicit dynamic vertical		arranged in 360 columns and 180 rows.
	canopy structure within each tile.		Mechanism Input. The files in the mechanism
			subdirecory (lat**long**.in) provide pre-computed,
			monthly-integrated photosynthesis and transpiration
			per leaf area for 121 light levels within the canopy.
			There are two sets of files, one for each physiology
			(C3 and C4) with one file per grid cell. Each file
			contains 5 columns for each light level for each
			month and includes: fraction of full light;
			photosynthesis with stomates open (g C/m2/month);
			photosynthesis with stomates closed (g
			C/m2/month); transpiration with stomates open (g
			Water/m2/month); and transpiration with stomates
			closed (g Water/m2/month).
			ISLSCP I Initiative Data. For the ED South
			American data set, the model was run using data
			from the International Satellite Land Surface

			Climatology Project (ISLSCP) Initiative I. These
			data input files provide modelers with many of the
			fields required to prescribe boundary conditions and
			initialize and force a wide range of land-biosphere-
			atmosphere models. All of these data have been
			preprocessed to the same spatial resolution (1 degree
			by 1 degree), using the same land/sea mask and
			processing steps to ensure spatial and temporal
			continuity. These data cover the period 1987 through
			1988 at a 1-month time resolution for most of the
			seasonally varying quantities and at 6-hourly
			resolution for the near-surface meteorological and
			radiative forcings. The data for 1987 and 1988 were
			averaged into a single average year.
6. <mark>FIDO</mark>	FIDO gives you access to the National FIA (Forest	http://www.nrs.fs.fed.us/tools/so	
	Inventory and Analysis) databases. You now have	<u>ftware/</u>	
	the ability to generate tables and maps of forest		
	statistics through a web browser without having to		
	understand the underlying data structures.		
7. <u>The Forest</u>	The Planning Guide is one of a group of computer	http://www.nrs.fs.fed.us/tools/so	
<u>Stewardship</u>	programs intended to support good forest	<u>ftware/</u>	
<u>Planning</u>	stewardship. The full set of tools is known		
Guide	collectively as NED, a computer-based, decision-		
	support system being developed by the US		
	Department of Agriculture, Forest Service,		
	Northeastern Forest Experiment Station. NED will		
	provide site-specific expert recommendations to		
	improve management for multiple values on forests		
	in the Northeastern United States.		
8. <u>ForGate</u>	FORGATE is a downloadable spreadsheet tool	http://www.nrs.fs.fed.us/tools/so	
	designed to communicate information relevant to	<u>itware/</u>	
	(CHC) evolution of projected net greenhouse gas		
	(GHG) exchange in the context of Malne's forests,		
	the forest sector of northeastern North America, and		
	alternative national or regional carbon (C)		

	accounting guidelines. A full version of Microsoft		
	Excel® (2007 or later) is required to run ForGATE.		
	Documentation and instructions are integrated into		
	the tool itself.		
9. <mark>GIS-FIA</mark>	The GIS-FIA Model was developed by Michigan	http://www.nrs.fs.fed.us/tools/so	
Model	Technological University in cooperation with the	<u>ftware/</u>	
	North Central Forest Inventory and Analysis (FIA)		
	research unit. The GIS-FIA Model is a geographic		
	information system program that summarizes FIA		
	data. The model runs from a project file in ArcView		
	under the Windows98/NT operating system.		
10. <u>GMLSM:</u>	The gypsy moth life system model (GMLSM) is a	http://www.nrs.fs.fed.us/tools/so	The Stand-Damage Model simulates tree diameter
(Gypsy	very complete model of the population dynamics of	<u>ftware/</u>	and height growth, foliage production, and mortality.
Moth Life	this insect pest as it is known to exist in North		Each year the model calculates diameter growth of
System	America. It simulates these dynamics within a		trees as a function of relative stocking (a measure of
Model)	single forest stand over a user defined time interval		tree crowding), shading, heat, and defoliation. Users
	(no. of years). It models the growth, feeding, and		describe a forest stand by entering tree counts by
	mortality of the gypsy moth in a single forest stand		species and diameter class. Parameters for over sixty
	by following a number of cohorts on a degree-day		tree species are provided.
	basis.		Gypsy Moth Software
			I wo models describe the North American Gypsy
			Moth population dynamics. The Life System
			Model is the most complex. The simple model is the
			Ordinary Differential Equations Model)
			(Ordinary Differential Equations Model).
			The GMI SM simulates the gupsy moth population
			dynamics within a single forest stand over a defined
			time interval (years). It models the growth feeding
			and mortality of gypsy moth by following a number
			of cohorts on a degree-day basis. It also models the
			population dynamics of natural enemies, including
			predators, parasites, and pathogens affecting and
			affected by gypsy moth. Because foliage is growing
			at the same time that gypsy moth is feeding, foliage

			growth dynamics is represented on a tree species-
			specific basis. Default conditions are provided and
			the user can set up simulated management actions
			(including viral, bacterial, or chemical pesticides,
			mating disruption, sterile egg release, and/or stand
			manipulations). Model parameters can be adjusted to
			account for local conditions. The Stand-Damage
			Model is included in the GMLSM.
			Ordinary Differential Equations Model
			This model consists of three coupled ordinary
			differential equations: One represents gypsy moth,
			one represents forest stand foliage, and the third
			represents natural enemies. While it lacks the details
			of the GMLSM, it provids insights into the stability
			and asymptotic behavior of this three trophic-level
			system. It has been extended to a system of partial
			differential equations and used to examine dispersal
			questions on a local level.
11. <u>GMPHE</u>	The GMPHEN model predicts the growth of gypsy	http://www.nrs.fs.fed.us/tools/so	
<u>N (Gypsy</u>	moth from egg eclosion to adult emergence from	<u>ftware/</u>	
Moth	the pupal stage. In this DOS program, users are		
Phenology 199	provided with a menu structured access system,		
Model)	permitting one to supply weather data for a		
	particular site in one of 5 formats. The program will		
	predict instar distribution over time.		

12.HARVES	HARVEST is a timber harvest allocation model that	http://www.nrs.fs.fed.us/tools/so	New Features in Version 6.1:
T v6.1	was constructed to allow the input of specific rules	ftware/	HARVEST parameter menu
HARVEST	to allocate forest stands for even-age harvest		
HARVEST v6.0	to allocate forest stands for even-age harvest (clearcuts and shelterwood) and group selection, using parameters commonly found in National Forest Plan standards and guidelines. The model produces landscape patterns that have spatial attributes resulting from the initial landscape conditions and potential timber management activities. Modeling this process allows experimentation to link variation in management strategies with the resulting pattern of forest openings and the distribution of forest age classes. The updated HARVEST Version 6.1 was released in Summer 2005. HARVEST Lite is the educational version of the software.		 The user can specify any combination of two treatment effects when a harvest is implemented, 1) the age to which the treated cells are set, including reducing the current cell age by a constant and 2) whether the forest type will be converted upon cutting (e.g., planting, different type of the residual stand, deterministic succession) Display the Age, Forest Type and the Management Area maps at any time The user can require harvest units to completely fill stand boundaries, even when a target cutblock size is specified The user can specify a maximum age, above which stands cannot be cut Save the Forest Type Map, since it now can change The user can conduct analyses of the spatial pattern of the landscape both before and after simulated harvest using the spatial pattern analysis software, APACK Version 6.1 adds calculation of the fragmentation index GISfrag (Ripple et al. 1991) Execution speed has been increased
			• Execution speed has been increased

13.HYBRID	The model, Hybrid v3.0, treats the daily cycling of	http://www.sysecol2.ethz.ch/Ref	Input data
	carbon, nitrogen, and water within the biosphere	s/EntClim/F/Fr035.pdf	Autumn daylength for leaf fall
	and between the biosphere and the atmosphere. It		Daylength
	combines a mass-balance approach with the		Rubisco oxygenation turnover number
	capacity to predict the relative dominance of		Photorespiration comp. CO 2 conc.
	different species or generalised plant types (such as		Constant for electron transport
	evergreen needleleaved trees, cold deciduous		Intercept in Rubisco calculation
	broadleaved trees, and C3 grasses). The growth of		Top leaf limit on N uptake
	individual trees is simulated on an annual timestep,		Latitude
	and the growth of a grass layer is simulated on a		Relative foliage to root C:N
	daily timestep. The exchange of carbon, nitrogen,		Atmospheric CO 2 concentration
	and water with the atmosphere and the soil is		M- M const, of Rubisco for O 2
	simulated on a daily timestep (except the flux of		Fine root/foliage C ratio
	tree litter to the soil, which occurs annually).		M - M const, of Rubisco for CO 2
	Individual trees and the grass layer compete with		Rubisco/chlorophyll N ratio
	each other for light, water, and nitrogen within a		Height/dbh coefficient
	'plot'. Larger and taller plants shade smaller ones;		Growth respiration coefficient
	they also take up a greater proportion of the		PAR extinction coefficient
	available water and nitrogen. The above-ground		Rubisco carboxylation turnover no.
	space in each plot is divided into 1 m deep layers		Maximum e- transport rate
	for the purposes of calculating irradiance		Fine root turnover rate
	interception; horizontal variation in the plot		Limit on top leaf N content
	environment is not treated. The soil is represented		Tree form factor
	as a single layer, with a daily hydrological budget.		Mean wood plus bark density
	Decomposition of soil organic matter is calculated		Maximum temperature for stomatal conductance
	using an empirical sub-model. The initial size of		40°C
	each tree seedling is stochastic. To predict the mean		Foliage turnover rate
	behaviour of the model for a particular boundary		Relative C:N of foliage and sapwood plus bark
	condition it is necessary to simulate a number of		Specific leaf area
	plots. Hybrid v3.0 has been written with three		Fine root respiration rate
	major requirements in mind: (i) the carbon, water,		Degree-day requirement for bud burst
	and nutrient cycles must be fully coupled in the		Constant in photosynthesis equation
	soil-plant-atmosphere system; (ii) the internal		Maximum stomatal conductance/Rubisco N ratio
	constraints on the model's behaviour, and the		Temperature threshold for phenology
	driving forces for the model, must be the same as		Stomatal conductance

those which operate in nature (e.g., climate,	Soil decomposition rate of all soil pools
nitrogen deposition, and the atmospheric	Wood respiration coefficient
concentrations of CO 2 and 02); and (iii) the model	Apparent sky temperature
must be constructed so that it is capable of	SW extinction coefficient
predicting transient as well as equilibrium	Fraction of sapwood alive
responses to climate change. These conditions have	Foliage/sapwood area ratio
largely been met by constructing the model around	Bark thickness/dbh ratio
a set of fundamental hypotheses regarding the	N uptake coefficient
general constraints under which plants and soils	Thermal resistance to heat loss
behave, independently of any particular location or	N deposition rate
time. The model is thus potentially capable of	Lignin content of litter
making reliable predictions of ecosystem behaviour	Night foliage respiration coefficient
and structure under future, new, amaospheric	Atmospheric vapour pressure deficit
conditions. The model is tested for a site in eastern	Water outflow fraction
North America. A quasi-equilibrium is reached	Leaf characteristic dimension
after approximately 250 years with 10 plots. It is	Minimum stem increment
found that more plots are not necessary in order to	Foliage dark respiration coefficient
obtain a reliable estimate of mean behaviour.	Boundary layer resistance to CO 2
Predictions of productivity, leaf area index, foliage	Wood plus bark turnover rate
nitrogen, soil carbon, and biomass carbon are all	Maximum soil water potential
within the range expected for this location.	Soil water filled pore space
	Height effect on stomatal conductance
	PAR reflection coefficient
	Ratio of soil water saturation to field capacities
	Plot area
	Soil texture (clay and sand contents); effect on
	decomposition
	Soil water holding capacity
	Accuracy of pipe model solution
	Below ground wood plus bark fraction
	Day temperature calculation factor
	SW reflection coefficient
	Molecular effect on diffusion
	Soil water drying curve parameter
	Leaf internal

14.IBIS (Integrated Biosphereulat or)	IBIS simulates a wide variety of ecosystem processes, including •energy, water, and carbon dioxide exchange between plants, the atmosphere, and the soil •physiological processes of plants and soil organisms, including photosynthesis and respiration •seasonal changes of vegetation, including spring budburst, fall senescence, and winter dormancy •plant growth and plant competition •nutrient cycling and soil processes	http://www.sage.wisc.edu/downl oad/IBIS/ibis.html	Canopy interception of precip. Plant C:N for N uptake calculation Snowmelt coefficient Exponent of height/dbh relationship N:C ratios of soil pools Fraction of live sapwood available for storage Foliage N retranslocation fraction Soil carbon leach rate Cuticular conductance http://www.sysecol2.ethz.ch/Refs/EntClim/F/Fr035. pdf IBIS input files 1961-1990 means These input files contain climate data based on the Climate Research Unit of the University of East Anglia http://www.cru.uea.ac.uk Dataset CRU CL 1.0 climate dataset modified by SAGE researchers at UW-Madison for compatibility with IBIS.
15. <u>i-Tree</u>	The i-Tree suite of software tools was developed to	http://www.nrs.fs.fed.us/tools/so	i-Tree Analysis Tools
	help users-regardless of community size or	<u>ftware/</u>	The three core i-Tree analysis tools are i-Tree Eco,
	technical capacity-identify, understand and	https://www.itreetools.org/index	Streets, and Design.
	manage urban tree populations. Better awareness of	<u>.php</u>	All three quantify tree benefits. The main difference
	the benefits and services provided by the urban		is in scale:
	forest resource leads to increased attention to		• i-Tree Eco can be used anywhere at any

stewardship,	appreciation	of	operations,	and	scale
investment in	maintenance.				• i-Tree Streets focuses on street trees
					• i-Tree Design is used to quantify ecological
					benefits at a site scale.
					i-Tree Eco
					Based on a complete inventory or random plots, i-
					Tree Eco can analyze structure, function, and value
					of benefits of trees at any scale. Pollution and
					weather data, as well as dollar value for ecological
					services provided, are pre-programmed into i-Tree
					Eco for geographical locations in the US, Canada,
					and most of Australia.
					The types of structural analysis provided includes:
					• Number of trees by land use (chart)
					• Number of trees per unit area by land use
					(chart)
					Species composition by DBH class
					Most important tree species
					Species richness, Shannon/Wiener Diversity
					Index
					Origin of trees by land use
					Condition of trees by species
					Condition of trees by land use
					Condition of trees by DBH and land use
					Leaf area of trees by land use (chart)
					• Leaf area of trees per unit area by land use
					(chart)
					• Leaf area and biomass of tree by DBH class
					and land use
					Leaf area and biomass of shrubs by land use
					Leaf area and biomass of trees and shrubs by
					land use
					Ground cover composition by land use
					Accuracy of land use predictions
					The types of ecosystem services values provided

include:
• Environmental services of trees by species
• Environmental services of trees by land use
Environmental services of trees per unit area
• Carbon storage of trees by land use (chart)
Carbon storage of trees per unit area by land
use (chart)
Annual carbon sequestration of trees per unit
area by land use (chart)
• Energy effects of trees
Avoided runoff of trees by species
Avoided runoff of trees by land use
• Oxygen production of trees by land use
(chart)
• Oxygen production of trees per unit area by
land use (chart)
• Monthly pollutant removal by trees and
shrubs
• Monthly pollutant removal by trees and
shrubs (chart)
• Hourly pollutant removal by trees and
shrubs (chart)
Bioemissions of trees by species
Bioemissions of trees by land use
i-Tree Streets
i-Tree Streets analyzes structure, management needs,
costs, and benefits of a municipality's street trees
based on a sample or complete inventory. It is a
valuable tool to set priorities for maintaining street
trees, planning tree replacements, and advocating for
the value of street trees.
Cost benefit analysis includes:
Energy benefits
Stormwater benefits
Air quality benefits

• Carbon dioxide benefits
Carbon storage benefits
Aesthetic benefits
Management costs
Net annual Benefits
Structural summary and analysis includes:
Population summary
Species distribution
Relative age distribution
Importance values
Condition
• Relative performance index
• Stocking level
Maintenance
• Land use
• Site type
• Conflicts
Canopy cover
i-Tree Design
i-Tree Design is a very easy to use web tool that
estimates benefits of individual or multiple existing
or proposed trees at the site level on Google Mans
imagery It can be used for example to advocate for
the value of existing or proposed trees and as a
design tool to compare benefits by potential new tree
species size and location alternatives Benefits
quantified by i-Tree design include tree benefits
related to greenhouse gas mitigation air quality
improvements and stormwater interception Tree
benefits can be estimated "for (a) the current year
(b) a user-specified forecast year sometime in the
future (c) the projected total benefits across that
future, (c) the projected total benefits provided
to date (based on estimated tree age)" (i-Tree
website at http://www.itreetools.org/design.nhn

	10/12/2014)
	accessed 8/12/2014)
	Other i-Tree analysis tools include i-Tree Hydr
	Vue, and Canopy.
	i-Tree Hydro (beta)
	i-Tree Hydro (beta) analyzes the effects of tree cov
	and impervious cover on stream flow and wat
	quality.
	i-Tree Vue
	i-Tree Vue uses the National Land Cover Databa
	(NLCD) imagery to assess land cover, tree canop
	and ecological services provided by the urban fores
	It can also model the effects of changing the curre
	urban forest on benefits provided by the urba
	forest
	i-Tree Canony
	i-Tree Canopy is a fast and easy way to determine
	land cover types and percent tree cover world-wi
	hand cover types and percent tree cover world-with
	values for air pollution reduction and capturin
	atmospheric carbon The land cover data from i Tr
	Concern also he wood to estimate land cover
	Canopy can also be used to estimate fand cov
	inputs for 1-1 ree Hydro.
	1-Tree Utility Tools
	1-Tree Species
	1-1 ree Species is a tool used to select tree speci
	based on desired environmental service
	geographical location, and tree height constraints.
	i-Tree Storm
	According to the i-Tree website, "i-Tree Stor
	establishes a standard method to assess widesprea
	damage immediately after a severe storm in
	simple, credible, and efficient manner. The
	assessment method is adaptable to vario
	community types and sizes, and it provid
	information on the time and funds needed to mitiga

			storm damage.
16.LANDIS Landscape Disturbance and Succession model	LANDIS is designed to model forest succession, disturbance (including fire, wind, harvesting, insects, global change), and seed dispersal across large (>1 million ha) landscapes. LANDIS represents landscapes as a grid of cells and tracks age cohorts of each species (presence/absence or biomass) rather than individual trees. LANDIS simulates distinct ecological processes, allowing complex interactions to play out as emergent properties of the simulation. LANDIS is designed with these considerations: It simulates forest landscape change over large spatial (103 - 107 ha) and temporal (101 -103 years) scale with flexible resolutions (10-500 m pixel size), balancing ecological complexity with current and foreseeable computational capability. It simulates the main natural and anthropogenic disturbances and their interactions with adequate mechanistic realism for these broad scales. It simulates species-level forest succession in combination with disturbances and management. It assumes that detailed, individual tree information and within-stand processes can be simplified, allowing large-scale questions about spatial pattern, species distribution, and disturbances to be adequately addressed.	http://www.nrs.fs.fed.us/tools/so ftware/ http://www.landis-ii.org/	 LANDIS 4.0 is a fully modular software product with improved fire simulation and new capabilities for simulating fuel accumulation and decomposition and disturbance by biological agents such as insects and disease. Dr. He led the development of this version at the University of Missouri in collaboration with the Northern Research Station in Rhinelander, Wisconsin. LANDIS-II is a completely re-engineered version developed at the Forest Landscape Ecology Laboratory, University of Wisconsin-Madison, in collaboration with the Northern Research Station in Rhinelander, Wisconsin. LANDIS-II was designed to advance forest landscape simulation modeling in many respects. Most significantly, LANDIS-II allows for the incorporation of ecosystem processes and states (e.g., live biomass accumulation) at broad spatial scales has flexible time steps for every process, and uses an advanced architecture that will significantly increase collaborative potential.

	It uses a component-based, object-oriented design that provides users with the flexibility of parameterizing and simulating only the processes of interest		
	 It uses classified satellite imagery as input, and output is compatible with most GIS software. 		
	☐ It requires moderate parameter input since for most landscapes in these scale		
	parameters may be poorly estimated.		
	LANDIS does not predict specific disturbance or management events. Rather, it is a scenario model that compares long-term effects of		
17 L DL L	various disturbance and management scenarios on the simulated landscape		
17.LPJmL - Lund- Potsdam- Jena managed Land	The model LPJmL is designed to simulate vegetation composition and distribution as well as stocks and land-atmosphere exchange flows of carbon and water, for both natural and agricultural ecosystems. Using a combination of plant physiological relations, generalized empirically established functions and plant trait parameters, it simulates processes such as photosynthesis, plant growth, maintenance and regeneration losses, fire disturbance, soil moisture, runoff, evapotranspiration, irrigation and vegetation structure. LPJmL is currently the only DGVM that has	https://www.pik- potsdam.de/research/projects/act ivities/biosphere-water- modelling/lpjml	
	dynamic land use fully incorporated at the global scale and also simulates the production of woody and herbaceous short-rotation bioenergy plantations. It differs from other models in the wider field by computing both carbon and water		

	flows explicitly: most other macro-hydrological models lack the important vegetation structural and physiological responses that influence the water cycle, while most other vegetation models lack the advanced consistent water balance of LPJmL, or are not global in scale. The monthly and daily input data are spatially explicit time series (typically ~60,000 global 0.5x0.5° grid cells) of climate, human land use, soil properties, and river flow directions. Grid cells may contain mosaics of one or several types of natural or agricultural vegetation. Outputs are generated as daily, monthly or annual spatially explicit time series for individual plants, carbon and water pools and fluxes, individual land-use types or the entire		
18.MC1 Dynamic Vegetation Model	MC1 is a model that simulates vegetation types, ecosystem fluxes of carbon, nitrogen, and water, as well as wildfire occurrence and impacts. MC1 is routinely implemented on spatial data grids of varying resolution (i.e., grid cell sizes ranging from 900 m2 to 2500 km2). The model reads climate data at a monthly time step and calls interacting modules that simulate: - Biogeography - Biogeochemistry - fire disturbance	http://consbio.org/products/tools /mc1-dynamic-vegetation-model	The biogeography module simulates the potential life-form mixture of evergreen needleleaf, evergreen broadleaf, and deciduous broadleaf trees, as well as C3 and C4 grasses. The tree lifeform mixture is determined at each annual time-step as a function of annual minimum temperature and growing season precipitation. The C3/C4 grass mixture is determined by reference to their relative potential productivity during the three warmest consecutive months. The tree and grass lifeform mixtures together with growing degree-day sums and biomass are used.
			simulated by the biogeochemistry module are used to determine which possible potential vegetation types (~20) occurs at each grid cell each year. The biogeochemistry module is a modified version of the CENTURY model, which simulates plant productivity, organic matter decomposition, and water and nutrient cycling once the vegetation type has been determined by the biogeography module.

	Plant growth is determined by empirical functions of
	temporeture moisture and putrient evoilability
	which dearmant set values of maximum notantial
	which decrement set values of maximum potential
	productivity. Plant growth is generally assumed not
	to be limited by nutrient availability. The direct
	effect of an increase in atmospheric carbon dioxide
	(CO2) is simulated using a beta factor that increases
	maximum potential productivity and reduces the
	moisture constraint on productivity. Grasses
	compete with woody plants for soil moisture and
	nutrients in the upper soil layers where both are
	rooted, while the deeper-rooted woody plants have
	sole access to resources in deeper layers. The growth
	of grasses may be limited by reduced light levels in
	the shade cast by woody plants. The values of model
	parameters that control woody plant and grass
	growth are adjusted with shifts in the lifeform
	mixture determined annually by the biogeography
	module. Plant parts simulated include leaves, fine
	branches, coarse branches and boles, fine and coarse
	roots. Litter pools include surface litter and standing
	dead, belowground litter and 3 soil carbon organic
	matter pools with increasing degrees of resistance to
	decomposition based on their chemical composition.
	The fire module simulates the occurrence, behavior,
	and effects of fire. It simulates the behavior of a fire
	event in terms of the potential rate of fire spread,
	fireline intensity, and the transition from surface to
	crown fire. Several measurements of the fuel bed are
	required for simulating fire behavior, and they are
	estimated by the fire module using information
	provided by the other two MC1 modules. The
	current lifeform mixture is used by the fire module
	to select factors that allocate live and dead biomass
	into different classes of live and dead fuels. The

			moisture content of the two live fuel classes (grasses and leaves/twigs of woody plants) are estimated from moisture at different depths in the soil provided by the biogeochemical module. Dead fuel moisture content is estimated from climatic inputs to MC1 using different functions for each of four dead fuel size-classes. Fire events are triggered in the model when the moisture content of coarse woody fuels, and the flammability of fine fuels all meet set thresholds. Sources of ignition (e.g., lightning or anthropogenic) are assumed to be always available. Area burned is not simulated explicitly as fire spread within a given cell. Instead, the fraction of a cell burned by a fire event is estimated as a function of set minimum and maximum fire return intervals for the dynamically-simulated vegetation type and the number of years since a simulated fire event. Simulated fire effects include consumption and mortality of dead and live vegetation carbon, which is removed from (or transferred to) the appropriate carbon mortality and consumption are simulated as a function of fireline intensity and the tree canopy structure, and dead biomass consumption is simulated using functions of fuel moisture that are fuel-class specific.
19. <u>Metavist</u>	Version 1.5 of Metavist 2005 computer program for creating metadata compliant with the Federal Geographic Data Committee (FGDC) 1998 metadata standard or the National Biological Information Infrastructure (NBII) 1999 Biological Data Profile for the FGDC standard. The software runs under the Microsoft Windows 2000 and XP	http://www.nrs.fs.fed.us/tools/so ftware/	Data Format Conventions To facilitate data entry, Metavist's user interface attempts to present data elements in commonly used formats. However, the metadata documents it creates conform to required standard formats. As specified in FGDC (1998), these formatting conventions are used in the output files: Δ Calendar Dates (Years,

Microsoft's .Net Framework version 1.1. The	• Common Era (C.E.) to December 31, 9999 C.E.—
metadata are output in XML format.	Values are formatted as YYYY for years,
Notes: Checksum for the zip file is	YYYYMM for a month of a year, and
597a3ee9b3da253bdc7396e608f3fcf5	YYYYMMDD for a day of a year.
Review "MetavistReadMe.html" (installed in the	• Before Common Era (B.C.E.) to 9999 B.C.E.
Metavist program directory) for information on the	Values are formatted as for Common Era dates but
bug fixes and added feature in this version.	are preceded by "bc" (e.g., bcYYYY for years).
Software and User's	• Before Common Era before 9999 B.C.E.—Values
Guide:http://nrs.fs.fed.us/pubs/2737	consist of as many numeric characters as needed to
	represent the number of the year B.C.E., preceded by
	lower case letters "cc" (e.g., ccYYYYY). Months
	and days are not relevant for this timeframe.
	• Common Era after 9999 A.D.—Values consist of
	as many numeric characters as needed to represent
	number of the year C.E., preceded by the lower case
	letters "cd" (e.g., cdYYYYY). Months and days
	are not relevant for this timeframe.
	Δ Time of Day (Hours, Minutes, and Seconds)
	• Because some geospatial data and related
	applications are sensitive to time of day information,
	three conventions are sanctioned. When authoring a
	metadata document you may choose which
	convention will be used, but you must use that
	convention throughout the document. The
	conventions are: — Local Time. Values follow the
	24-hour timekeeping system for local time of day in
	the hours, inutes, seconds, and decimal fractions of a
	second (to the precision desired) without separators
	convention (general form of HHMMSSSS).
	— Local Time with Time Differential Factor. Values
	follow the 24-hour timekeeping system for local
	time of day in hours, minutes, seconds, and decimal
	fractions of a second (to the precision desired)
	without separators convention. This value is
	followed, without separators, by the time differential

	factor. The time differential factor expresses the
	difference in hours and minutes between local time
	and Universal Time (Greenwich Mean Time) It is
	represented by a four-digit number preceded by a
	plus sign $(+)$ or minus sign $(-)$ indicating that hours
	and minutes local time is ahead of or behind
	Universal Time, respectively. The general form is
	HHMMSSSSshhmm, where HHMMSSSS is the
	local time using 24-hour timekeeping, 's' is the plus
	or minus sign for the time differential factor, and
	hhmm is the time differential factor. (This option
	allows authors to record local time and time zone
	information. For example, Eastern Standard Time
	has a time differential factor of -0500, Central
	Standard Time has a time differential factor of -
	0600, Eastern Daylight Time has a time differential
	factor of -0400, and Central Daylight Time has a
	time differential factor of -0500.)
	— Universal Time (Greenwich Mean Time). Values
	follow the 24-hour5 timekeeping system for
	Universal Time of day in hours, minutes, seconds,
	and decimal fractions of a second (expressed to the
	precision desired) without separators convention,
	with the upper case letter "Z" directly following the
	low-order (or extreme right hand) time element of
	the 24-hour clock time expression. The general form
	is HHMMSSSSZ, where HHMMSSSSS is Universal
	Time using 24-hour timekeeping, and Z is the letter
	"Z".
	Δ Latitude and Longitude
	• Values for latitude and longitude are expressed as
	decimal fractions of degrees. Whole degrees of
	latitude are represented by a two-digit decimal
	number ranging from 0 through 90. Whole degrees
	of longitude are represented by a three-digit decimal

	number ranging from 0 through 180. When a
	decimal fraction of a degree is specified, it is
	separated from the whole number of degrees by a
	decimal point. Decimal fractions of a degree may be
	expressed to the precision desired.
	— Latitudes north of the Equator are specified by a
	plus sign (+), or by the absence of a minus sign (-),
	preceding the two digits designating degrees.
	Latitudes south of the Equator are designated by a
	minus sign (-) preceding the two digits designating
	degrees. A point on the Equator is assigned to the
	Northern Hemisphere.
	- Longitudes east of the prime meridian are
	specified by a plus sign (+), or by the absence of a
	minus sign (-), preceding the three digits designating
	degrees of longitude. Longitudes west of the
	meridian are designated by minus sign (-) preceding
	the three digits designating degrees.
	A point on the prime meridian is assigned to the
	Eastern Hemisphere. A point on the 180th meridian
	is assigned to the Western Hemisphere. One
	exception to this last convention is permitted. For
	the special condition of describing a band of latitude
	around the Earth, the East Bounding Coordinate data
	element shall be assigned the value +180 (180)
	degrees.
	— Any spatial address with latitude of +90 (90) or -
	90 degrees will specify the position at the North or
	South Pole, respectively. The component for
	longitude may have any legal value.
	Δ Network Addresses and File Names
	• Values for file names, network addresses for
	computer systems, and related services use the
	Internet's Uniform Resource Locator (URL)
	convention when possible. The link referenced in the

			http://www.ling.upenn.edu/advice/urlprimer.html
20.NED NED is a collection of software products being developed by the USDA Forest Service. The NED software is intended to aid resource managers to develop goals, assess current and future conditions, and produce sustainable management plans for forest properties. NED-3 NED 3 has many similarities with NED-2 but also has many improvements. It runs simulations much faster and works with all of the latest variants of FVS, which can be updated by the user as new ones are released. The report generation interface has been revised substantially to make it easier to use and to keep using a standard set of reports. NED-3 now incorporates SILVAH, a sister program created by the Northern Research Station that can provide expert-based prescriptions for timber management of a stand. There are now four different wildlife habitat evaluation models built into NED-3 for a wider area of applicability, according to the user's request. NED-3 also links with ForGATE, an external program that provides a life-cycle analysis of carbon from the forest and forest products. There are additional features of NED-3 still being developed. NED-2 The final version of NED-2 (version 2.60.02) was released on June 27, 2012. Designed for stand-alone Windows-based personal computers, NED-2 integrates a variety of forest management tools into a single environment. These tools include databases, growth and yield models, wildlife	NED is a collection of software products being developed by the USDA Forest Service. The NED software is intended to aid resource managers to develop goals, assess current and future conditions, and produce sustainable management plans for forest properties. NED-3 NED 3 has many similarities with NED-2 but also has many improvements. It runs simulations much faster and works with all of the latest variants of FVS, which can be updated by the user as new ones	http://www.nrs.fs.fed.us/tools/so ftware/	Minimum dbh for height estimates - If you do not record merchantable height, NED can estimate merchantable height for sawtimber and pulpwood in hardwoods and softwoods. If the dbh is less than the minimum dbh you specify, sawtimber and/or pulpwood height is set to zero. Minimum top diameter for board-foot volume estimates-You can specify a minimum top diameter for calculating board-foot volume. NED will calculate volume for logs only if the diameter of the top portion of the log is greater than or equal to the threshold.
	Minimum lengths - When NE sawlog and/or pulpwood height, for any value that is less than lengths you specify. Include dead trees in timber v ba, vols) - You can choose wheth to include dead trees in its calculat checked, all computations for ti include dead trees. When confi tables and reports, you will again to to include dead trees in those calcu- the ability to calculate values for d Boardfoot volume equation - To options for boardfoot volume equation - To	 Minimum lengths - When NED is estimating sawlog and/or pulpwood height, it will return zero for any value that is less than the minimum log lengths you specify. Include dead trees in timber values (stems-per, ba, vols) - You can choose whether you want NED to include dead trees in its calculations. If this box is checked, all computations for timber values will include dead trees. When configuring vegetation tables and reports, you will again be given the option to include dead trees in those calculations as well as the ability to calculate values for dead trees only. Boardfoot volume equation - There are several options for boardfoot volume equation Scrivani—Wiant: uses Scrivani for logs greater than or equal to 	
	The final version of NED-2 (version 2.60.02) was released on June 27, 2012. Designed for stand-alone Windows-based personal computers, NED-2 integrates a variety of forest management tools into a single environment. These tools include databases, growth and yield models, wildlife		16-feet, and Wiant for logs less than 16-feet. Scrivani only: taken from Scrivani, John A. 1989. An Algorithm for Generating "Exact" Girard Form Class Volume Table Values. Northern Journal of Applied Forestry (6) p140-142. Wiant only: taken from Wiant, H.V. Jr., and F. Castenada, 1977.

models, geographic information systems (GIS),	Mesavage and Girard's Volume Tables Formulated.
visualization tools, and others. The software is	Resource Inventory Notes, USDI, BLM 4: 1-4,
distributed with an online help system and a printed	Denver, CO. Wiant, 1986 NJAF 3(1986) Forest
user's manual. This user's manual provides	Service Eastern Region: from FSH 2409.12A -
guidance for use of the software and a basic	Timber Volume Estimator Handbook; Chapter 50 -
introduction to the principles and calculations used	Application page 12.
in NED-2. A reference guide with more detailed	Wengert: see
explanations of the models, equations, and rules	http://www.woodweb.com/knowledge_base/Measuri
that underlie the software is available separately.	ng Logs and Lumber.html
MIWILD	User table: this gives the user a chance to enter their
As of October 5, 2007, a new product, MIWILD, is	own volumes. When this option is chosen the
available for download. MIWILD is software that	"Table" button is enabled which allows the user to
uses a database of expert knowledge to analyze	build the board-foot table. Instructions for filling
extent of wildlife habitat. Originally designed for	out that table are covered in another document.
use in planning activities on state land in Michigan,	Boardfoot volume rule - You can specify which
MIWILD was developed as a set of information and	rule you want NED to use in estimating board-foot
assessment tools for individuals interested in the	volume. NED provides the three most commonly
wildlife of Michigan and their associated habitats.	used equations, or log rules: International 1/4 Inch,
	Doyle, and Scribner.
	Regeneration rule
	Silvah
	McWilliams
	Green Mountain National Forest
	Q-factor size class interval - In calculating the q-
	factor for a stand, NED can use 1- or 2-inch
	diameter size-class intervals.
	Which one you choose depends on how you tallied
	your data.
	Overstory/Understory dbh-threshold - NED-2 uses
	diameter at breast height (dbh) to distinguish
	between overstory and understory stems, with a
	default threshold value of one inch. This means that
	any woody stem with a dbh greater than or equal to
	one inch would be inventoried as overstory, and
	would be included in any subsequent analysis of the

21. <u>OUTCO</u> <u>MES</u>	OUTCOMES (OUTdoor COMfort Expert System), is a Windows® program that shows the	http://www.nrs.fs.fed.us/tools/so ftware/	overstory. This setting may affect the default dbh when you enter a new overstory observation. If this threshold is greater than your default dbh value, NED will apply the overstory/understory dbh threshold as the initial dbh value for the new observation. This threshold does not affect calculations on stand metrics such as basal area, relative density, biomass, etc. However, during treatment plan simulation, stems less than the current dbh threshold would be considered understory. Once these stems grow to a dbh that is greater than or equal to the current threshold, they would be considered overstory. Big tree dbh threshold - The big tree threshold is a specific diameter at breast height (DBH) that indicates whether a tree is considered large or "big". NED uses the big tree threshold to report on big trees in your forests.
	comfort index for any time and geographic location		within a sphere of influence that includes blocking
	considering the full range of weather variables, the		of sun by a tree or solid object, diffuse and thermal
	density of a tree crown that shades a person, and other features of the surrounding neighborhood		radiation from the sky which is proportional to a numerical sky view that is input by the user
	The program was written to provide an easy-to-use		reflected radiation from the ground that varies with
	interface and ample on-screen help. Another		the reflection index (albedo) of the ground, and
	program, OUTCOMES Batch, calculates the		thermal radiation from objects that are assumed in
	comfort index for any length of weather records.		this version to be at air temperature.
			3. It solar radiation is not provided as input, the
			assumption that the sky is clear of clouds
			4 Calculated solar radiation can be adjusted for
			pollution effects by choosing "air pollution" from a
			menu that includes the categories "very clean,"

			"fairly polluted," or "very polluted." 5. OUTCOMES has limited ability to extrapolate weather data from an airport site to neighborhoods in the vicinity. Modifications to airport temperature and humidity may be predicted for sites in a small woodland ("garden" in the "Site" menu), a dense residential area with large trees ("Residential") and a "Downtown" site. The equations for this extrapolation were derived for summer conditions in Atlanta, GA and may not apply to other cities, climates, or times of the year. (See also item 2 in "How to use below.) Modifications to wind speed are given based on the "Cover density," the estimated percentage of the area in the upwind direction out to about 300 m (1000 ft) that is covered by trees and buildings. Wind reductions by very close buildings, walls, or trees would likely be greater than the reductions calculated from Cover
22. Quick- Silver (only available within the	Fast and flexible program for economic analysis of long-term, on-the-ground resource management projects for forest managers. (Windows version) Non- FS users may contact <u>Doug Smith</u> or <u>Susan</u> Winter to request a copy of the current version	http://www.nrs.fs.fed.us/tools/so ftware/	density.
Forest Service)	winter to request a copy of the current version.		
RPA Data Wiz	The RPA Data Wiz software allows users to create summary tables, graphs, and maps of RPA data with only basic computer skills and resources. With the Data Wiz volumes for growing stock, live cull, dead salvable, net growth, mortality, acreage, biomass and tree count can be estimated for a given area.	http://www.nrs.fs.fed.us/tools/so ftware/	 FIA tools are specialized computer programs created specifically to analyze FIA data. Tools allow the user to create custom maps and tables and to determine facts such as these: 1. How much forest land is there in the United States? 2. What is the distribution of American back

		1	
			in New England?
			3. What is the area of timberland, by county, in Minnesota?
			4. What is the volume of red oak saw timber in New Hampshire?
			The FIA database contains extensive data on forest area attributes, such as forest type, stand size, stand age, and forest disturbance. Data are also collected on individual trees, which are tracked over time. Some tree attributes include species identification, diameter at breast height, tree length, and tree damage. More in-depth measurements related to forest health are collected on a sub sample of the plots. These include Tree Crown Condition, Lichen Communities, Ozone Injury, Down Woody Materials, Soil Condition, and Vegetation Diversity and Structure.
23. <u>RPGrow</u> \$	A red pine growth and analysis spreadsheet for the Lake States.	http://www.nrs.fs.fed.us/tools/so ftware/	SPREADSHEET DESIGN A1G1 Growth and yield assumptions Thinning strategy I1P1 Financial and annual incremental cost calculations Q1AB1 Initial growth assumptions A21P21 Alternative assumptions I11P21 One-time incremental cost assumptions R79AB79 2nd growth calculations A41H41 Growth and yield summary I41P41 One-time incremental cost assumptions R156AB156 3nd growth calculations A141H141 Yearly growth summary

			I61P61 Revenue
			R233AB233 4th growth calculations
			I82O82 Financial summary
			I101K101 Timber account
24.SEIB-	The SEIB-DGVM is a dynamic vegetation model,	http://seib-dgvm.com/	It contains mechanical-based or empirical-based
DGVM	which aims to simulate transient impacts of climatic		algorithms for :
	change on terrestrial ecosystem, and land-		1. Land physical processes (hydrogy, radiation, air,
	atmosphere interactions.		etc.)
			2. Plant physiological processes (photosynthesis,
			respiration, growth, etc.)
			3. Plant dynamic processes (establishment,
			mortality, disturbance)
25.Species	The parameterisation of vegetation models requires	http://www.biogeo.org/ASJ/SD	In an attempt to increase the accuracy of vegetation
parameterisa	assessment of a large amount of data and	<u>GVM.html</u>	model simulations for particular regions (for
tion of the	necessarily involves the reduction of complex		example, the United Kingdom, Europe or Siberia), it
Sheffield	ecological and physiological parameters to		is necessary to find representative values to describe
<u>Dynamic</u>	averages. In an ideal world, variation in each		the vegetation parameters used in the models. The
<u>Global</u>	parameter would be assessed in the natural		parameterisation of vegetation models requires
Vegetation	environment to give an estimate of variability for		assessment of a large amount of data and necessarily
Model	each average value.		involves the reduction of complex ecological and
(SDGVM)			physiological parameters to averages. In an ideal
			world, variation in each parameter would be
			assessed in the natural environment to give an
			estimate of variability for each average value. It is
			necessary to attempt to determine average values
			from a variety of sources, both published (eg.
			research papers, textbooks, forestry and crop
			manuals, web-based databases) and unpublished (eg.
			unpublished datasets and the vast reserve of
			knowledge held by individual
			toresters/ecologists/physiologists).
26. <u>SILVAH</u>	SILVAH is a computer tool for making silvicultural	http://www.nrs.fs.fed.us/tools/so	Tree Data
	decisions in hardwood stands of the Allegheny	ttware/	Species Codes; Diameter; Quality; Merchantable
	Plateau and Allegheny Mountain region. It is an		Height or A Tree Count; Grade, Defect, Crown, and
	"expert system" in that it recommends appropriate		Wildlife Codes;

	treatments based upon user objectives and overstory, understory, and site data provided by the user. SILVAH also contains a forest stand growth simulator, provides the ability to test alternative cuts, enables development of a forest-wide inventory database, and facilitates other forest management planning functions		
27. <u>SOLVE</u>	A computer program that helps sawmill managers improve efficiency and solve problems commonly found in hardwood sawmills. SOLVE provides information on key operational factors including log size distribution, lumber grade yields, lumber recovery factor and overrun, and break-even log costs. (Microsoft Windows? Edition)	http://www.nrs.fs.fed.us/tools/so ftware/	
28. <u>Spec2Har</u> <u>v</u>	Spectrum to Harvest - Spec2Harv was developed to automate the conversion of harvest schedules generated by the Spectrum model into script files that can be used by the HARVEST simulation model to simulate the implementation of the Spectrum schedules in a spatially explicit way.	http://www.nrs.fs.fed.us/tools/so ftware/	Spectrum produces output files that include the acres to be treated with various timber harvest methods by Analysis Unit over the time period of the planning horizon. If the Analysis Units are designed to coincide with Management Areas (MA) and forest types (FT), the output can be converted into the parameters that HARVEST requires for spatial simulation. This conversion is not trivial because Spectrum produces treatment prescriptions for each Analysis Unit over all time periods in a single record, while HARVEST sequentially implements all treatments for all Analysis Units (MA and FT combinations) within each time period. Spec2Harv was designed to automate the conversion process. Algorithms were developed to interpret the Spectrum output and to automatically create a HARVEST script file. Script files eliminate the need to manually specify the harvest parameters for each Analysis Unit, saving time and reducing the risk of typographical errors.

29.Stand-	The Stand-Damage Model simulates the growth of	http://www.nrs.fs.fed.us/tools/so	Trees, Defoliation, Management, Weather
Damage	individual trees within forest stands. The user can	ftware/	
Model	change much about the forest and its environment:		
	the location of the forest, its weather and soil, and		
	the trees at the beginning of the simulation. One can		
	try different logging practices and introduce global		
	warming temperature changes. You can grow your		
	own forest stand and graph the results.		
30. <u>TPO</u>	Two similar RPA / TPO applications are offered	http://www.nrs.fs.fed.us/tools/so	The SRS TPO application generates tables based on
Reporting	here.	<u>ftware/</u>	report years (1996,
Tool	The National RPA application generates tables		1997,2001,2002,2003,2005,2007) or data years
	based on RPA report years: 1996 (aka 1997), 2001		(1995,1996,1997,1999,2001,2002,2003,2005,2007).
	(aka 2002), 2006 (aka 2007) only.		The output tables have been recently re-written,
	There are 12 tables that may be generated for the		changing the format so that the html output can be
	United States, Regions (Northeast, North Central,		read as an xls file.
	Southern, Rocky Mountains or Pacfic Coast) for		1) Right click on link
	State(s) and/or Counties.		2) Save target as
			change the file name extension to .xls leave the file
			type as HTML document.
31.TRIFFID	TRIFFID (Top-down Representation of Interactive	http://climate.uvic.ca/model/co	The surface CO2 fuxes associated with
	Foliage and Flora Including Dynamics)" is a	mmon/HCTN 24.pdf	photosynthesis and plant respiration are calculated in
	dynamic global vegetation model, which updates		the MOSES 2 tiled land-surface scheme (Essery et al
	the plant distribution and soil carbon based on		(In preparation)), on each atmospheric model
	climate-sensitive CO2 fuxes at the land-atmosphere		timestep (normally 30 minutes), for each of 5 plant
	interface.		functional types. The area covered by a plant type is
			updated (normally every 10 days) based on the net
			carbon available to it and on the competition with
			other plant types, which is modelled using a Lotka-
			Volterra approach. Soil carbon is increased by
			litterfall, which can arise from local processes such
			as leaf-drop as well as large-scale disturbances
			which reduce the vegetated area. Soil carbon is
			returned to the atmosphere by microbial respiration
			which occurs at a rate dependent on soil moisture
			and temperature. TRIFFID has been designed to

			allow economical diagnosis of initial states using a
			Newton-Raphson descent towards the equilibrium
			state consistent with a given climate.
32.TWIGS-	TWIGS is a DOS program used to simulate growth	http://www.nrs.fs.fed.us/tools/so	
Central	and yield for forests in the North Central region. It	ftware/	
States and	also includes management and economic analysis		
Lake States	components. Two variants are available: Central		
	States (Indiana, Illinois, and Missouri) and Lake		
	States (Michigan, Minnesota, and Wisconsin).		
	SeeGen. Tech. Rep. NC-125 (Miner et al. 1988. A		
	guide to the TWIGS program for the North Central		
	United States. Gen. Tech. Rep. NC-125, St. Paul,		
	MN: USDA Forest Service, North Central Forest		
	Experiment Station, 105p.) for details on running		
	the program.		
33. <u>U.S.</u>	The Carbon Calculation Tool 2007, CCT.exe, is a	http://www.nrs.fs.fed.us/tools/so	Th e input set of FIA data files available on the
Forest	computer application that reads publicly available	<u>ftware/</u>	Internet (as well as some older inventory fi les used
<u>Carbon</u>	forest inventory data collected by the USDA Forest		to fi ll in gaps) are summarized by the application,
Calculation	Service's Forest Inventory and Analysis Program	Software, User's Guide, and	converted to carbon stocks, and saved as part of a
Tool (CCT)	(FIA) and generates state-level annualized estimates	Example Data	state or substate level "survey summary" file. This is
	of carbon stocks on forestland based on	Sets:http://nrs.fs.fed.us/pubs/2	used to produce state-level and national tables with
	FORCARB2 estimators. Estimates can be	<u>394</u>	annualized carbon stocks and flux (or net stock
	recalculated as new inventory data become		change) beginning with the year 1990.
	available. The input set of FIA data files available		
	on the Internet (as well as some older inventory		
	files used to fill in gaps) are summarized by the		
	application, converted to carbon stocks, and saved		
	as part of a state or substate level "survey		
	summary" file. This is used to produce state-level		
	and national tables with annualized carbon stocks		
	and flux (or net stock change) beginning with the		
2.4 5	year 1990.		
34. <u>The</u>	The UFORE computer model was developed to	http://www.nrs.fs.fed.us/tools/so	The model also calculated various forest functions
Urban Forest	help managers and researchers quantify urban forest	ttware/	and values related to tree effects on:
Effects	structure and its functions. UFORE is designed to		

(UFORE)	use standardized field data from randomly located		Air pollution
Model	plots, and local hourly air pollution and		Greenhouse gases and global warming
	meteorological data to quantify urban forest		Building energy use
	structure and numerous urban forest effects for		6 67
	cities across the world. The model calculates		This model is currently available through i-Tree. The
	numerous attributes about the urban forest.		program, which was originally written in SAS, is
	including:		currently being converted in cooperation with
			the Davey Resource Group, to a Windows® based
	Species composition		code. New analytic modules are and will be
	 Diameter distribution 		developed in the future, including GIS-based
	Tree health Species diversity		mapping and analysis canabilities.
	• Evotic vs. native species distribution		
	• Exote vs. hadve species distribution		Field Data Collection Manuals (UFORE manual
			available at i-Tree)
			Presents information of how to establish plots and
			measure variables that can be used to quantify urban
			forest structure, functions, and values, Manual for
			urban FIA (2mb- pdf) plots is complete.
			Tree/shrub species codes - (used for both manuals)
			are available in two formats.
			Tree/shrub species code list as pdf
			Tree/shrub species codes list as .XLS
			Funding Sources: USDA Forest Service's State and
			Private Forestry, Cooperative Forestry's Urban and
			Community Forestry Program: Forest Health
			Monitoring: and Northern Research Station: the
			National Urban and Community Forestry Advisory
			Council: and the Texas Forest Service
35.EnVision	EnVision is designed to be a full featured rendering	http://vterrain.org/Plants/Forestr	Basic components of an EnVision project include a
	system for stand- and landscape-scale images.	<u>y/</u>	digital terrain model to define the ground surface,
Environment	Applicable projects range from a few to several		color and texture maps to define ground surface
<u>al</u>	thousand acres. The system is built upon many of		characteristics, and groups of objects or "actors".
Visualizatio	the original concepts used to develop the Vantage		Scene definitions include background imagery used
n System	Point visualization system. However, EnVision		to add clouds and distant landscape features, model
	does not attempt to model changes to the landscape		components (e.g. terrain model(s) and polygon

	over time.		overlays), viewpoint and camera characteristics, and
			foreground imagery used to provide high detail in
			the image foreground. EnVision models individual
			light sources including a simulated sun position and
			atmospheric effects such as fog and haze. EnVision
			renders images using a geometrically correct camera
			model making it possible to match real photographs
			taken from known viewpoints to simulated scenes.
<u>36.SVS -</u>	The Stand Visualization System or SVS generates	http://vterrain.org/Plants/Forestr	
Stand	graphic images depicting stand conditions	<u>y/</u>	
Visualizatio	represented by a list of individual stand		
<u>n System</u>	components, e.g., trees, shrubs, and down		
	material (example SVS image 67k). The images		
	produced by SVS, while abstract, provide a readily		
	understood representation of stand conditions.		
	Images produced using SVS help communicate		
	silvicultural treatments and forest management		
	alternatives to a variety of audiences.		
	SVS provides the following capabilities:		
	• Display stand information represented by a		
	list of individual plant and log components		
	in a realistic, although abstract, fashion		
	• Display stand information in a manner that		
	communicates the overall structural		
	diversity present within the stand		
	• Differentiate between stand components		
	using different plant forms, colors, or other		
	types of marking		
	• Provide overhead, profile and perspective		
	views of a stand		
	• Allow the user to vary the parameters		
	controlling all views		
	• Allow users to define plant forms and		

	 colors based on species, plant type, and plant position within the canopy Provide tabular and graphical summaries of stand information before and after a silvicultural treatment Display information describing individual stand components as they are selected by the user Allow the user to design of silvicultural treatments by "marking" stand components and specifying a treatment 		
<u>37.TreeView</u>	As trees are three-dimensional objects the program TreeView was created for three- dimensional representation. From the available data three-dimensional bodies are created for every single tree. These are moved to a ground according to the tree coordinates and displayed on the screen using the central projection. By the usage of different optimizations it is possible for the user to move in real-time through such a virtual forest and thereby viewing it from an arbitrary position. Because of the interaction possibilities in the virtual stand this kind of representation is versatile: From simply representing a stand to the training of wood reaping measures.	http://vterrain.org/Plants/Forestr y/	
<u>38.L-Vis</u>	As an addition to this stand visualization another program named L-Vis was developed with which one can even represent whole forest landscapes. Data from forest enterprises as they arise in inventories such as the forest distribution or structure can be changed into representations of the forest areas again with help of Silva and L-Vis. Thus it is possible to judge changes in the	http://vterrain.org/Plants/Forestr y/	

39.The Virtual Forest	appearance of these forest landscapes in advance without actual taking actions and also to show developments of forests. Advanced 3-D Visualization Techniques for Forest Management and Research	http://proceedings.esri.com/libra ry/userconf/proc98/PROCEED/ TO350/PAP337/P337.HTM	
40.VECODE (Vegetation Continuous Description model)	Simulation of vegetation dynamics and carbon cycle within climate system model CLIMBER-2 Fractional description of vegetation cover, regressional model for NPP and parameters of the carbon cycle, explicit equations for vegetation dynamics. The model is designed for simulations on a global spatial scale and on a time scale from decades to millennia. However, for model intercomparison purposes, it can be used on a fine (local) spatial resolution. Seasonal dynamics of carbon fluxes/pools are not accounted for in the present version of the model.	http://gaim.sr.unh.edu/Structure/ Intercomparison/EMDI/models/ vecode.html	PROCESSES AND PROCESS COMPONENTS SIMULATED (E.G. CARBON: GPP, NPP, NEP): Carbon: NPP, allocation of NPP between leaves and structural biomass, SOC dynamics, NEP Water: Soil water budget, energy balance are not accounted for in VECODE; their dynamics are calculated in climate module of CLIMBER-2 a) Soils (simple bucket, saturated/unsaturated flow, controls on water movement through the profile, etc.): b) Energy balance: (e.g. latent, sensible heat, aet, pet): c) Snow: e) 'Order' of water balance: (e.g. incoming water is first evaporated from plant/soil surface, then infiltration, transpiration, runoff)
41.Stand	The Stand Visualization System or SVS generates	http://forsys.cfr.washington.edu/	SVS requires two primary types of data: a list of
visualization	graphic images depicting stand conditions	svs.html	stand components and plant form definitions. The
system	represented by a list of individual stand		stand component list describes the species, size and
<u>(SVS)</u>	components, e.g., trees, shrubs, and down material.		location of each component in a stand. Plant form
	provide a readily understood representation of stand		and, optionally, the appearance of individuals
	conditions. Images produced using SVS help		exhibiting different growth forms within a species.
	communicate silvicultural treatments and forest		The following parameters describe each stand
	management alternatives to a variety of audiences.		component:

	SVS provides the following specific conshilities:				
	Display stand information represented by a list of				a
	Display stand information represented by a list of		Species code	End diameter	Crown radius
	individual plant and log components in a realistic,			2110 010110001	4
	although abstract, fashion		Plant class	Crown radius 1	Crown ratio 4
	Display stand information in a manner that				Expansion
	communicates the overall structural diversity		Crown class	Crown ratio 1	factor
	present within the stand				Maultina
	Differentiate between stand components using		Plant status	Crown radius 2	Marking
	different plant forms, colors, or other types of				status
	marking		Diameter	Crown ratio 2	Х
	Provide overhead, profile and perspective views of		Height	Crown radius 3	Y
	a stand		Felling angle	Crown ratio 3	Flevetion
	Allow the user to vary the parameters controlling		rennig angle	Clowin ratio 5	Lievation
	all views				
	Allow users to define plant forms and colors based				
	on species, plant type, and plant position within the				
	canopy				
	Provide tabular and graphical summaries of stand				
	information before and after a silvicultural				
	treatment				
	Display information describing individual stand				
	components as they are selected by the user				
	Allow the user to design of silvicultural treatments				
	by "marking" stand components and specifying a				
	treatment				
42.UTOOLS	UTOOLS is geographic analysis software	http://forsys.cfr.washington.edu/	The Paradox '	spatial databases	" are built with
and UVIEW	developed for watershed-level planning. The	utools.html	several UTOOL	S programs as foll	ows:
	system provides a flexible framework for spatial		• Project	data are assemble	d and downloaded
	analyses and can be used to address a variety of		to a H	C. This involve	es the following
	problems. The difference between UTOOLS and		operatio	ns:	C
	other spatial analysis software packages is that in		•	Exporting map lay	vers from the local
	UTOOLS all spatial data for a given project is			GIŜ	
	integrated into a single Paradox databases, where		0	Exporting attribut	e data from Oracle
	basic data operations can be quickly and easily			or elsewhere	
	performed. For instance, complex overlay		0	Obtaining raw	USGS digital

	operations that involve combinations of map layers and attributes can be done (and re-done) with simple Paradox queries. Generating new layers from combinations of existing ones is also easy.		 elevation data (available on all forests). The GIS map layers are gridded and converted to a Paradox "spatial database" with the program UCELL5. Spatial databases contain a record for each pixel or grid cell on the ground, and a field for each map layer. The pixel cell size can be varied according to the needs of the user. Attribute data that describe GIS polygons (e.g. canopy closure, species, stand structure etc) are imported to Paradox and added to the spatial database using a Paradox relational query. Elevation data are added to the spatial database by processing the USGS digital elevation data with the programs IMPRTDEM and ADDELEV. A "terrain model", which is required by UVIEW for 3D viewing is also built by running the program EXTELEV. "Derived" map layers are added to the spatial database, like slope, aspect, stream buffers using UCELL5. Landsat data are added with the ADDERDAS utility
43.SmartFor		http://www.imlab.uiuc.edu/SF/S	
est		<u>F_II.html</u>	
44.BALAN	The model BALANCE simulates growth of single	http://www.wwk.forst.tu-	
<u>CE</u>	trees under variable environmental conditions	muenchen.de/research/methods/	
	(CO2, climate, soil, competition), including stress	modelling/balance	
	(U3) and parasite influence. It is meant to assess the		
	strategies for resource acquisition of different tree		

45.BWINpro	species, which is assumed to be a critical point in forecasts of stand development under changed conditions (e.g. temperature increase, changed thinning regime) at least if long time frames are to be judged. BWINPro is a random growth model, which is based on the long-term time series of forest growth and yield test plot data NW-FVA. In Lower Saxony BWINPro has for some years part of the forest management planning process.	http://www.nw- fva.de/index.php?id=194&no_ca che=1&sword_list[]=bwinpro#c 682	
<u>46.CABAL</u> <u>A</u> <u>CArbon</u> <u>BALAnce</u>	CABALA (CArbon BALAnce) is a model designed to support management of plantations and forests. Using inputs like rainfall, temperature, salinity, water table depth and data on the species of tree, CABALA can estimate variables like biomass production, carbon sequestration, nitrogen content and canopy height of trees in plantations and forests. CABALA can be used to model relatively homogeneous forests and plantations with a wide range of planting designs, including row, widely spaced and block plantings.	http://www.csiro.au/services/CA BALA	Applications: estimating plantation performance siting plantations managing forests estimating carbon credits managing drought risks
47.CO2FIX	CO2FIX is a modelling frame in which a user builds his own (forest) data in order to simulate the long term carbon balance of a forest ecosystem. It provides annual output in terms of carbon stocks and fluxes.	http://www.efi.int/projects/casfo r/	
48.CONIFE RS	Conifers is an individual-plant growth and yield simulator with two variants. The SWO variant is for young mixed-conifer stands in southern Oregon and northern California and the SMC variant variant is for northwestern Oregon and western Washington. Conifers provides forecasts for young plantations of single species or mixed-species growing with or without competition from shrubs (data requirements/overview).	http://www.fs.fed.us/psw/topics/ forest_mgmt/conifers/	

49.DFSIM Douglas-fir Simulator	DFSIM (Douglas-fir Simulator) is a managed stand growth and yield simulator for coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii). It was developed in the 1980s from remeasured plot data contributed by many organizations in the Pacific Northwest. It is designed to project the development of stand with at least 80 percent basal area in Douglas-fir and produces yield tables for managed stands with include the effects of initial spacing, precommercial thinning, commercial thinning and fertilization. The DFSIM model also contains an economics option that allows users to estimate present net worth of the simulated regime.	http://www.fs.fed.us/pnw/softwa re/DFSIM14/DFSIM.htm	
50.FIRE- BGC FIRE BioGeoChe mical process model	FIRE-BGC is a mechanistic vegetation dynamics model developed to investigate the role of fire and climate on long-term landscape dynamics in northern Rocky Mountain coniferous forests.	http://eco.wiz.uni- kassel.de/model_db/mdb/fire_bg c.html	FIRE-BGC is a highly complex, individual tree model created by merging the gap-phase, process- based model FIRESUM with the mechanistic ecosystem biogeochemical model FIRE-BGC. It has mixed spatial and temporal resolution in the simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information contained in spatial data layers. Stand- level processes such as tree establishment, growth, and mortality; organic matter accumulation and decomposition; and undergrowth plant dynamics are simulated both daily and annually on a simulation plot that represents the stand. Daily climate is strongly linked to FIRE-BGC algorithms. FIRE- BGC also explicitly simulates fire behaviour and effects on landscape characteristics and processes.
51.FORECA ST	FORECAST is an ecosystem-based, stand-level, forest growth simulator. The model was designed to accommodate a wide variety of harvesting and silvicultural systems in order to compare and	http://www.forestry.ubc.ca/ecom odels/moddev/forecast/forecast. htm	As a management model, FORECAST can simulate a wide variety of activities such as fertilizer application, brushing, partial harvesting, and mixedwood management. Disturbances such as fire

	contrast their effect upon forest productivity, stand		and insect defoliation can also be represented.
	non-timber values. The model uses a hybrid		FORECAST are ultimately constrained by the
	approach whereby local growth and yield data are		potential yields of single species stands as specified
	combined with other data to derive estimates of the		in the calibration data for a range of site qualities.
	rates of key ecosystem processes related to the		Growth and yield in complex stands is based on a
	productivity and resource requirements of selected		simulated partitioning of limited resources (light and
	species. FORECAST uses relatively simple		nutrients) among species and age cohorts. The
	measures of decomposition, nutrient cycling, light		biological properties of individual species, as
	competition, and other ecosystem properties to		defined by the input data, determine their relative
	simulate forest growth and ecosystem dynamics		competitiveness for limited resources.
	under changing management conditions. Growth		
	occurs in annual time steps. Depending upon the		To date, the FORECAST model has been calibrated
	species, plant populations within the model can be		and used in variety of forest ecosystems, both in
	initiated from seed and/or vegetatively, and stand		Canada and elsewhere. In B.C. it has been used in
	from non target tree species and understory		conjunction with various landscape level models for
	noni non-target tree species and understory		projecting the spatial and temporal dynamics of a
	populations.		while range of stand attributes in forests subjected to
			such analysis is being used to support the
			development of sustainable forest management
			nlans
52 Forest-	Six parameters were investigated and predicted in	http://daac.ornl.gov/OTTER/gui	The Oregon Transect Ecosystem Research (OTTER)
BGC Model	Running's BGC-forest model: the decomposition	des/Runnings Forest BGC Mo	Project was a cooperative effort between NASA and
(OTTER)	ratio of detritic material: the amount of water that	del.html	several universities to discern the ecology of western
<u> </u>	was evaporated, respired, and transpired; the net		coniferous forests using remote sensing technology
	photosythesis that occurred, and the soil moisture		supported by gound observations. OTTER is an
	content.		interdisciplinary project that tested a model that
			estimated the major fluxes of carbon, nitrogen, and
			water through a temperate coniferous forest
			ecosystem.
			Six Oregon sites across an elevational and climatic
			gradient were intensively studied. The transect
			began at the Pacific coast at the site called Cascade
			Head, passed through the outskirts of Corvallis,

53.FORET Forests of Eastern Tennessee	The forest stand growth simulator FORET was developed by adapting the northeastern forest growth model JABOWA for modeling the diverse forests of the southern United States.	http://eco.wiz.uni- kassel.de/model_db/mdb/foret.ht ml	through a dense Douglas fir forest at Scio, through a mountain hemlock/subalpine fir community at Santiam Pass, through a Ponderosa pine community near Metolius, and ended at a site east of Sisters called Juniper. In all, the transect stretched some 300 kilometers west to east. Goals of the project were to simulate and predict ecosystem processes such as photosynthesis, transpiration, above-ground production, nitrogen transformation, respiration, decomposition, and hydrologic processes; combine field, lab, and remote sensing techniques to estimate key vegetaion and environmental parameters; construct a "geo- referenced" database for extrapolation and testing of principles, techniques, and prediction; and verify the predictions through direct measurements of process rates or controls on processes. Six parameters were investigated and predicted in the BGC-forest model: the decomposition ratio of detritic material; the amount of water that was evaporated, respired, and transpired; the net photosythesis that occurred; and the soil moisture content.
ForGro 54.Forest Growth Model	ForGro is a process-oriented, deterministic model. The model is a physiologically based carbon- balance model of forest growth. It describes the flow of water, carbon and nutrients in the forest ecosystem. The model can be described as an	http://eco.wiz.uni- kassel.de/model_db/mdb/forgro. html	ForGro includes hydrological submodels for calculating snow-fall, canopy water dynamics, forest-floor water dynamics and soil water dynamics. Compartments: - Hydrology: Solution of water content from nutrient balance model.
	integrated and closed-system Forest-Soil- Atmosphere model. Processes that are included		Transpiration from Penman-Monteith Nutries uptake: Driven by demand and limited by radi

	consist of: photosynthesis and respiration, phenology, hydrology (detailed and partly empirical), nutrient cycling (mechanistic), forest growth (detailed and partly empirical), and forest		diffusion from the bulk soil to the root Soil chemistry: ForGro uses NuCSAM as submodel Forest growth: Photosynthesis is driven by light interception. Gross carbon assimilation is summed
	structure development.		per leaf layer. Fixed allocation scheme Effect relations: Nutrient shortage and stomatal uptake of
			SO2 and O3 in foliage reduce photosynthesis. Al
			effects root growth and nutrient uptake. Direct
55 EODEKA	The EODSVA model was arisingly developed to	https://www.wils	uptake of NH3.
<u>33.FUKSKA</u>	The FORSKA model was originally developed to	<u>nups://www.pik-</u>	
	& Leemans 1990: Prentice et al 1993) It simulates	cookie auth/require login?cam	
	growth, regeneration and mortality of individual	e from=https%3A//www.pik-	
	trees on small forest patches. FORSKA shares the	potsdam.de/institute/archive/199	
	common gap model structure with many other	4-2000/chief/forska.htm	
	models (Shugart 1984), but it includes more		
	mechanistic formulations of tree growth and some		
	environmental constraints of forest growth than		
56 EDC	most earlier gap models.	http://foresthiometries.com/soft	
Forest	and Planning System (FPS) software for forest	ware functionality html	
Projection	inventory, growth projection, silvicultural planning	ware functionality.intim	
and Planning	and long-term harvest scheduling.		
System			
<u>57.FVS</u>	The Forest Vegetation Simulator (FVS) is an	http://www.fs.fed.us/fmsc/fvs/	
Forest	individual-tree, distance-independent growth and		FVS Models and Components
Vegetation	yield model (Dixon 2002). It has been calibrated for		The FVS software system is comprised of the
Simulator	States (Figure 1) FVS can simulate a wide range of		regional FVS variants, model extensions, a graphical
	silvicultural treatments for most major forest tree		user interface (called Suppose), and a suite of post-
	species, forest types, and stand conditions.		processing programs that allow stand visualization
			and customize output reports to meet user requests.
			FVS Geographic Variants

	An FVS variant is a growth and mortality model calibrated to a specific geographic area of the United States. There are 20 different FVS variants. Users select an appropriate FVS variant for their area. FVS variants are calibrated for each of the major tree species within a geographic region. Extensions to the base variants are also available to assess the effects of insect, disease, and fire.
	You can find information regarding the codes, relationships, and logic specific to the individual variants in the <u>Variant Overview</u> documents. We developed an <u>FVS Variant Map</u> to suggest the FVS variant for any point in the United States, and is distributed in the form of a shapefile. Model Extensions
	Extensions to FVS are models that function interactively with the base FVS geographic variant to simulate the effects of various forest ecological disturbances on forest growth and mortality.
	The <u>insect and disease extensions</u> incorporate the effects of insects and forest pathogens on forest stands. Fully functioning physiologic sub-models include:
	Western root disease model Douglas-fir Beetle Model Douglas-fir Tussock Moth Model Dwarf Mistletoe Model
	Lodgepole Mountain Pine Beetle Model Western Spruce Budworm Damage Model

			White Pine Blilster Rust Model
			Westwide Pine Beetle Model
			Fire and Fuels Extension (FFE)
			The FFE links the FVS variant with models of fire behavior, fire effects, fuel loading, and snag dynamics. Model outputs include predictions of potential fire behavior and effects and estimates of snag levels and fuel loading over time.
			Carbon Submodel
			The <u>FVS carbon reports</u> are part of the Fire and Fuels Extension to FVS and estimate the amount of carbon stored in various forest stand components, such as standing live and dead trees and surface fuels, over time.
			Climate-FVS
			The Climate Extension to the Forest Vegetation Simulator (<u>Climate-FVS</u>) provides forest managers a tool for considering the effects of climate change on forested ecosystems.
			ECON
			The Economic Extension (ECON) computes economic measures during FVS simulations to aid evaluation of silvicultural alternatives.
58.JABOW A	JABOWA is a simulation model of northern hardwood forest groth, in which changes in the state of the forest are a function of the present state and random components.	http://ecobas.org/www- server/rem/mdb/jabowa.html	Tree species are defined by a few general characteristics: - maximum age, - maximum diameter,
			- maximum hight,

			relations between:
			- height and diameter
			- total loaf weight and diameter
			- total leaf weight and traineter,
			- rate of photosynthesis and available light,
			- relative growth and a measure of climate,
			range of soilmoisture conditions within which the
			species can grow, number of samplings which can
			enter the stand under shaded, open or very open
			conditions.
			The abiotic environment and cut of trees are also
			considered. Direct competition among individuals is
			restricted to competition for light. The simulation
			refers to 10 x 10 m plots. For each plot year of
			simulation three major subroutines are called:
			subroutine GROW, which deterministically provides
			the annual growth increment for each tree;
			subroutine BIRTH, which stochastically adds new
			samplings; and subroutine KILL, which
			stochastically decides which trees die.
59.SORTIE	SORTIE is a mechanistic, spatially explicit,	http://www.wiz.uni-	
	stochastic model of forests in the northeastern	kassel.de/model db/mdb/sortie.	
	United States that describes local competition	<u>html</u>	
	among nine species of trees in terms of empirically		
	derived responses of individuals. The nine species		
	modeled are all dominant or subdominant species		
	found in mid- and late-successional stands:		
	American beech (Fagus grandifolia; Be), eastern		
	hemlock (Tsuga canadensis; Hm), sugar maple		
	(Acer saccharum; SM), red maple (Acer rubrum;		
	RM), yellow birch (Betula alleghaniensis; YB),		
	white pine (Pinus strobus; WP), red oak (Quercus		
	rubra; RO), black cherry (Prunus serotina; BC), and		
	white ash (Fraxinus americana; WA). (For more		
	detailed species descriptions, see Pacala et al. 1993.		
	Data for the model were collected in northwestern		

	Connecticut at elevations between 350 and 550 m.	
60.STIM	The Stand and Tree Integrated Model (STIM) is an	http://www.for.gov.bc.ca/hre/gy
Stand and	empirical model that integrates a stand-level sub-	models/STIM/
Tree	model with an individual-tree, distance-independent	
Integrated	sub-model. This integration allows the two sub-	
Model	models to interact and reconcile with one another. it	
	was designed to produce potential growth and yield	
	tabels for even-aged stands of coastal western	
	hemlock and trembling aspen. The hemlock model	
	has been calibrated for both natural and thinned	
	stands based on data from coastal British Columbia,	
	Washington and Oregon. The aspen model has been	
	calibrated for both natural and thinned stands based	
	on data from across Canada.	
61.TADAM	TADAM-df, TADAM-p, and TADAM-s, are	http://forestgrowth.unbc.ca/tada
	growth models for British Columbia Coastal	<u>m/</u>
	Douglas-fir, Interior lodgepole pine, and Interior	
	white spruce plantations, respectively. They are	
	based on a stand-level dynamical system	
	approximation to output from TASS.	
62.TASS	The Tree and Stand Simulator (TASS) is a three	http://www.for.gov.bc.ca/hre/gy
Tree and	dimensional growth simulator that generates growth	models/TASS/index.htm
<u>Stand</u>	and yield information for even-aged stands of pure	
Simulator	coniferous species of commercial importance in	
	coastal and interior forests of British Columbia.	
63.TRAGIC	TRAGIC++ is an interactive forest stand simulation	http://www.bayceer.uni-
	program. In TRAGIC++, the development of a	bayreuth.de/mod/html/webapps/
	forest is simulated as the collective dynamics of	tragic++/index_englisch.html
	individually growing trees, each of which competes	
	with the others for light, space and nutrients.	
	Interaction is possible by removing or planting	
	single or groups of trees and by changing the	
	environmental conditions (light an nutrients). The	
	TRAGIC++ program is based on a relatively simple	
	process-based tree growth model that can be	

	parameterised to represent trees of different species.		
<u>64.TRIPLE</u> X	TRIPLEX is a generic hybrid model of forest growth and carbon and nitrogen dynamics, developed based on three well-establisher process	http://flash.lakeheadu.ca/~chpen g/	The model is intended to be comprehensive without becoming complex, and minimizes the number of input parameters required, while capturing key
	model, i.e. 3-PG (Landsberg and Waring, 1997), TREEDYN3.0 (Bossel, 1996) and CENTURY4.0 (Parton et al., 1993).		processes and important interactions between the carbon and nitrogen cycles of forest ecosystems. It is designed as a hybrid of both empirical and mechanistic components that can be used for 1) making forest management decisions (e.g., growth and yield prediction), 2) quantifying forest carbon budgets, and 3) assessing the effects of climate change in both the short and long term. In addition, TRIPLEX simulates average stand characteristics rather than those of individual trees. It is designed to develop as a generic model that can be parameterized for even- or uneven-age coniferous and broad-leaved species at any geographical location and for different soil and climate conditions. Modelling processes of TRIPLEX are described in details by Peng et al. (2002).
<u>65.ZELIG</u>	ZELIG (Urban, 1990) is an individual tree simulator that simulates the establishment, annual diameter growth, and mortality of each tree on an array of model plots.	http://ecobas.org/www- server/rem/mdb/zelig.html	Model states are recorded in a tally of all trees on a plot, with each tree labeled by species, size (diameter), height to base of live crowns, and vigor (based on recent growth history). The competitive environment of the plot is defined by the height, leaf area, and woody biomass of each individual tree determined by allometric relationships with diameter. Plot size is defined by the primary zone of influence of a single canopy-dominant tree. The plot is considered homogeneous horizontally, but vertical heterogeneity (canopy height and height to base of crown) is simulated in some detail. Adjacent cells interact through light interception at low sun angles. Establishment and annual diameter growth is first computed under optimal (nonlimiting) conditions,

and then reduced based on the constraints of
available light, soil moisture, soil fertility, and
temperature. Climate effects are summed across
simulated months. Seedling establishment, mortality,
and regeneration are computed stochastically, while
the growth stage is largely deterministic.
Simulations can start or stop at any point within the
life cycle of a forest.

*Информацията е обобщена от: M. Lyubenova, A. Chikalanov, S. Boteva, S. Peteva